
Multilingual Sage*

Jordi Saludes1, Sebastian Xambó2

1 Sistemes Avançats de Control, Universitat Politècnica de Catalunya, Edifici GAIA, Pg. Ernest Lluch/Rambla Sant
Nebridi, 08222 Terrassa, Spain.
2 Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Edifici OMEGA, c/ Jordi Girona 1-3, 08034
Barcelona, Spain.
E-mail: {jordi,sebastia}@upc.edu

Abstract

The aim of this paper is to review the Mathematics Grammar Library (MGL) approach to
multilingual mathematics and to present gfsage, a prototype of a multilingual interface to
Sage.

2000 Mathematics Subject Classification. 68N18. 68T30, 68T50, 68W30.
Keywords. Multilingual Machine Translation, Mathematics Grammar Library, Multilingual Interfaces to Computer Algebra
Systems, SAGE..

Introduction
The problem of multilingual machine translation (MLMT) of mathematical texts is, in all its gen-
erality, very hard as seen from a present day perspective (see the detailed analysis by Aarne Ranta
in [8]). Even for the much narrower context of MLMT of school word problems, the difficulties are
still very high and not fully solvable yet (cf. [11, 12]).

A special case of MLMT that in principle is fully sovable with current techniques is when one of
the languages, say S, is the language generated by the input/output grammar of a computational
system, and the other language, sayX, is a natural language. In this case the problem is to translate
commands expressed in X into input commands expressed in S and conversely, to translate output
results phrased in S into sentences in X. In symbols, we want to manage the translation Xi → Si

of the input segment Xi of X to the input syntax of Si of S and the translation So → Xo of the
output syntax So of S to the output segment Xo X.

In this paper we focus on the case in which S is Sage [2, 1] and X is any language of a list of
natural languages that we will specify in a later section. Actually we can assume, as we will do,
that X stands for a fixed language of that list, as the translation of the involved sentences between
the languages of the list is well understood by current means. In fact, for simplicity, we will take
X to be English (henceforth E).

The organization of the material is as follows. In Section 1 we outline in rather informal terms the
general approach to MLMT that we will follow, with special emphasis on the particular problems
posed by interfaces to computing systems. Then, in Section 2, we recall the main features of the
Grammatical Framework (GF), the programming paradigm on which MOLTO (and other previous

* The research leading to the results presented here has received funding from the European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. FP7-ICT-247914 (MOLTO project: http:
//www.molto-project.eu/).

Tbilisi Mathematical Journal 5(2) (2012), pp. 121–132.
Tbilisi Centre for Mathematical Sciences & College Publications.

122 J. Saludes, S. Xambó

and current projects) is based. Our approach to MLMT of mathematical text is presented in
Section 3. The main component is a GF library that we call Mathematical Grammar Libray
(MGL). With these ingredients, we can discuss in more detail the problem of producing natural
language interfaces to computer algebra systems (CAS) and, more specifically, to Sage (Section
4). In this case, we have developed a prototype interface, gfsage, based on MGL, and we devote
Section 5 to outline its main features. In Section 6 we include some examples of how the interface
works. Finally we summarize some conclusions, and hint at future work, in Section 7.

1 Grammar based MLMT
There are two main approaches to MLMT translation. One is statistical machine translation
(SMT) and the other is grammar (or rule) based translation (GMT). We refer to the recent
treatises [4] and [7], respectively, for excellent presentations of these two approaches. They are
complementary, in the sense that GMT aims at precision, at the expense of coverage, while SMT
has a broad coverage at the expense of precision. Incidentally, one of the strong points of the
MOLTO project is to advance in the cooperation between these two approaches and the establishing
of criteria for optimal compromise, when needed, between them.

Here, due to the nature of the concerns in this paper (natural language interfaces to CAS), we
will only consider the GMT approach. This is not unreasonable, as the total precision requirement
is at the same time the basis for interfaces driven by a predictive parsing mechanism.

The core of GMT is an abstract semantic syntax U , often called an interlingua, together with
maps A : E → U (parser) and L : U → E (linearizer). The parser extracts the meaning of E-
sentences in a language independent form (U -sentences) and the linearizer renders abstract mean-
ings as E sentences.

In the case of wishing natural language interface to a computational system S, the concepts
involved and the problems to be solved are summarized by the following scheme:

S

Ei

Ai Li
Si

SoEo

AoLo

Ui

Uo

Elements of a natural language interface to a computational system.

Here Si and So denote the input and output syntaxes of the system S, which may be thought as
sets of strings. The right hand side of the diagram means that S receives an input string from
Si and that it returns and output string belonging to So. On the other hand, Ei and Eo denote
the natural language syntaxes designed to express commands to S and to interpret the results,
respectively. The core component of the interface is formed by the abstract grammars Ui and Uo,
which we may think as a language independent layer. Indeed, the grammar Ui allows us to parse
Ei commands to abstract syntax (the map Ai in the diagram) and to linearize the abstract syntax
into Si syntax (the map Li in the diagram), which is what S understands. Similarly, the grammar

Multilingual Sage 123

Uo allows us to parse output strings of S into abstract syntax (the map Ao in the diagram) and to
linearize that syntax to strings in Eo.

Thus at one end we have S, with its native peculiarities, and at the other the natural language
segments appropriate for expressing commands and interpreting results. The link between the two
is the semantic layer represented by Ui and Uo. We go from Ei to Si in two steps: with the parser
Ai we abstract Ei commands into Ui form and with the linearizer we render the Ui expressions into
strings that are understood by S. In the other direction, the ouput strings of S are abstracted to
Uo form by the parser Ao and then the resulting expressions are linearized into natural language
strings in Eo.

At this stage it is also important to be aware that the natural languages Ei and Eo will be
a mixture of text and formulas, as the same is true for Si and So. The abstract expressions
corresponding to such formulas can be thought in terms of encodings such as LATEX.

2 The Grammatical Framework
In our view, the best choice to implement the functions Ai, Li, Ao and Lo is the Grammatical
Framework (GF) [7, 8]. GF is a programming language that allows writing abstract grammars and
concrete grammars. An abstract grammar generates a set of trees (abstract syntax) and a concrete
grammar for a given abstract grammar associates a string (concrete syntax) to each abstract tree.
One of the main features of GF grammars is that these two aspects work as inverse processes: an
abstract grammar actually parses strings into trees, which capture the semantics of the application
domain, and a concrete grammar linearizes trees into strings. The multilingual capacity is achieved,
roughly speaking, by writing suitable concrete grammars for a given abstract grammar.

Let us see in some more detail a few basic principles that drive GF that we need in later sections.
For a complete reference, see [7].

Abstract syntax
To set up the abstract syntax, we have to introduce categories and functions. To explain the
meaning of these concepts, and how they are used, an example should suffice. If we want to talk
about natural numbers, we can introduce a category Nat to stand for the type of natural numbers
and a category Prop to stand for propositions about natural numbers. The GF syntax to declare
these categories is as follows:

cat Nat, Prop ;

Now, according to elementary axiomatic matematics (every natural number is zero or the successor
of a natural number), we need to express that ‘zero is a natural number’ and that ‘the successor of
a natural number is a natural number’. In GF this is achieved with the following code:

fun
Zero : Nat ;
Succ : Nat -> Nat ;

Here Nat -> Nat is the GF syntax, borrowed from functional programming, to express the signature
of functions from Nat to Nat.

The signature of predicates such as ‘even number’ or ‘prime number’ is Nat -> Prop, as they
produce a proposition when applied to a natural number. Similarly, the signatures of the ‘sum’

124 J. Saludes, S. Xambó

and ‘product’ functions are both Nat -> Nat -> Nat, and Nat -> Nat -> Prop is the signature
of the binary predicate ‘less than’. Thus we can write

fun
Even, Prime : Nat -> Prop ;
Sum, Prod : Nat -> Nat -> Nat ;
Less : Nat -> Nat -> Prop;

Finally, the signatures of the logical operations ‘not’, ‘and’ and ‘or’ can be abstracted as follows:

fun
Not : Prop -> Prop ;
And, Or : Prop -> Prop -> Prop ;

Again, the functional programming syntax Prop -> Prop -> Prop expresses the type of funtions
that map each pair of propositions about natural numbers to a third proposition about natural
numbers. For example, the abstraction of ‘2 is an even number and 2 is a prime number’ is the tree
And (Even 2) (Prime 2), if we understand that 2 is the tree Succ Succ Zero.1

In practical terms, the declarations so far would form the body of an abstract module that would
have the form

abstract Arith = {<body>}

where Arith is the name of the module.

Concrete syntax
To any abstract syntax we can associate any number of concrete syntaxes. A concrete syntax
associated to an abstract syntax is defined by declarations lincat, one for each category C, and
lin, one for each function f . If C is a category, and T a valid linearization type (usually a linguistic
construct), lincat C=T means that the linearization type of C is T . Similarly, if f is a function
and t a valid function linearization type (usually a syntactic constructor), then lin f=t declares
that the linearization type of f is t. An example will suffice to see how these declarations work.
The listing

lincat
Nat, Prop = Str

declares that we will linearize Nat and Prop as Str (the built-in type of strings). As for the
linearization of functions, next listings show a few examples. The listing

lin
Zero = "zero" ;
Succ n = "the successor of" ++ n ;
Sum n m = "the sum of" ++ n ++ "and" ++ m ;
Less n m = n ++ "is less than" ++ m;

shows verbal linearizations, whereas

1In practice we have to deal also with the fact that we say ‘2 is an even prime number’ instead of ‘2 is an even
number and 2 is a prime number’. We refer to [8] for indications of how to address these kind of parsing difficulties.

Multilingual Sage 125

lin
Zero = "0" ;
Succ n = n ++ "+" ++ "1" ;
Sum n m = n ++ "+" ++ m ;
Less n m = n ++ "<" ++ m;

provides formula linearizations. The operator ++ means token concatenation (like string concate-
nation, but with a space to separate tokens). In the verbal linearization, Succ Zero becomes “the
successor of zero” and in the formula linearization, “0 + 1”.

3 Mathematics Grammar Library
Our approach to MLMT of mathematical text is based on the development of a GF application
that we call Mathematical Grammar Libray (MGL).2 This library was presented in [11]. Here we
update the background presentation contained in that paper, which we follow closely, but refer to
[3] for the interactive demo application MathBar.

As in any application coded in GF, we need to specify what categories will be used. In the
case of MGL, the most relevant categories are Value O and Variable O, where O is a Number, a
Function, a Set or a Tensor (for vectors or matrices). The present version of the library implements
these categories by defining a fixed category for each pair in

{Value, Variable} × {Number, Function, Set, Tensor}.

The names of these categories are VarNum, VarFun, VarSet, VarTen, ValNum, ValFun, ValSet and
ValTen. For example, VarNum and ValSet are the names of the categories Variable Number and
Value Set, respectively. Declarations such as x : VarNum and s : ValSet mean that x is a
numeric variable and s is a set, like, say, “the domain of the natural logarithm”. The distinction
between variables and values is useful for type-checking productions like lambda abstractions that
require a variable as the first argument. Let us also say that variables can be promoted to values
when needed.

Finally, let us remark that the library includes other categories to represent propositions, geo-
metric constructions and indexes.

The library is organised as a matrix. The columns of the matrix correspond to natural languages,
which at present are Bulgarian, Catalan, English, Finnish, French, German, Hindi, Italian, Polish,
Romanian, Russian, Spanish, Swedish and Urdu. To this list we have added LATEX, a programming
language for typesetting mathematical texts, and the natural language interface to Sage that will
be presented in Section 5

The rows of the matrix correspond to three layers, ordered in increasing complexity:

Ground. It deals with literals, indices and variables.

OpenMath. It is modelled after the OpenMath3 CD’s, in the sense that in this layer there is an
MGL module for each CD.

2The living end of the library is publicly available using subversion as
svn co svn://molto-project.eu/mgl.

A stable version can be found at
svn co svn://molto-project.eu/tags/D6.1.

3A de facto standard for mathematical semantics, and usually abbreviated as OM. It is “an extensible standard

126 J. Saludes, S. Xambó

Operations. This layer takes care of simple mathematical exercises. These appear in drilling
materials and usually begin with directives such as ‘Compute’, ‘Find’, ‘Prove’ or ‘Give an
example of’.

The following tree is an example of what can be expressed in the OpenMath layer:

mkProp
(lt_num

(abs (plus (BaseValNum (Var2Num x) (Var2Num y))))
(plus (BaseValNum (abs (Var2Num x)) (abs (Var2Num y)))))

When linearized, say with the Spanish concrete grammar, it yields
El valor absoluto de la suma de x e y es menor que la suma del valor absoluto de x y del valor
absoluto de y.

Similarly, the tree

DoSelectFromN
(Var2Num y)
(domain (inverse tanh))
(mkProp

(gt_num
(At cosh (Var2Num y))
pi))

gives, when linearized with the English concrete grammar:
Select y from the domain of the inverse of the hyperbolic tangent such that the hyperbolic
cosine of y is greater than pi.

Remark. The CD’s that appear in the OM layer are those that were considered useful for the
WebALT project (http://www.webalt.net/):

• arith1, arith2, complex1, integer1, integer2, logic1, nums1, quant1, relations1, rounding1;

• calculus1, fns1, fns2, interval1, limit1, transc1, veccalc1;

• linalg1, linalg2;

• minmax1, plangeo1, s_data1, set1, setname1.

These CD’s suffice to express arithmetic operations, basic relation statements, and calculus of one
variable (including derivatives and integrals).

for representing the semantics of mathematical objects, allowing them to be exchanged between computer programs,
stored in databases, or published on the worldwide web” (see [6]). It is structured in Content Dictionaries (CD’s),
each of which defines a collection of mathematical objects.

Multilingual Sage 127

4 Multilingual interfaces to Computer Algebra Systems
According to the scheme introduced in Section 1, and taking into account the discussions in Section
2, in order to have a natural languge interface to a CAS system S, E ↔ S, we need abstract and
concrete grammars for Ei, Eo, Si and So. All these grammars depend on S. This is clear for Si and
So, but it is also true for E (or X in general), as the minimum natural language segment needed
to feed the interface frontend is determined by S.

At this point we see that the MGL presented in Section 3 is a sort of grammatical platform
that can be used to approach this problem. So in principle we could produce multilingual interfaces
to existing CAS systems with manageable effort. When it comes to choose a first system to try
these ideas, Sage distinctly stands out. Aimed at “creating a viable free open source alternative
to Magma, Maple, Mathematica and Matlab”, Sage is a sophisticated computational environment
produced by an on-going collective endeavour led by William Stein (See [5, 2] for a description of
the system and its functionalities). The fact that it can be accessed via Internet, makes it a winner
on several counts, including its potential role in the teaching/learning of mathematics up to the
university level.

5 gfsage
This is a recently developed MGL-based multilingual interface prototype to Sage. In other words,
it enables to express Sage commands in natural language and get the results phrased likewise. This
section elaborates on the outline presented in [11, 12].

The tool starts a Sage session in the background (as described in Simple Sage Server API,
[9]), reads the pgf grammar file4 and translates the queries from the chosen natural language to
the concrete grammar for Sage. This is passed to the Sage server for evaluation and the server
replies with a done or a computing message. In this case the program waits for completion of the
computation and then writes the answer.

From the GF side, what is sent to Sage is always in the category Command. What is returned by
Sage is in the category Answer. There are 3 kinds of Commands:

• Asking for a computation.
Compute: Kind -> Value Kind -> Command.

Sage gives back a ReturnBlock with the cell number and the answer (a string). We could
now construct a short Answer by using:

– Simple: k ∈ Kind -> Value k -> Answer
(“it is 5”), or

– Feedback: k ∈ Kind -> Value k -> Value k -> Answer
(“the factorial of 3 is 6”), that combines the question (the first Value k) with the Sage
answer.

• Assuming propositions.
Assume: Prop -> Command.

4pgf stands for portable grammar format, which is a low-level binary format obtained by compiling GF grammars,
a facility included in the GF shell. For details, we refer to [7], Chapter 7.

128 J. Saludes, S. Xambó

Sage silently accepts the command by returning an EmptyBlock (with cell number) but we
want it to be more assertive, so we reinject the Prop into Assumed: Prop -> Answer
(“I assume that x is greater than 2”)

• Binding Values to Variables.

Assign: k ∈ Kind -> Var k -> Value k -> Command
(“assign 2 to x”).

We expect Sage to return an EmptyBlock followed by

Assigned: k ∈ Kind -> Var k -> Value k -> Answer
(“2 is now assigned to x”).

Let us conclude this section with a brief summary of the main current features of gfsage:

• With gfsage one can express arithmetic operations, basic relations and calculus of real func-
tions of a real variable (derivatives and integrals, both definite and indefinite). This limited
coverage is already a suitable baseline for applications such as those outlined in [12].

• The gfsage input is driven by a predictive parser. This is a user-friendly feature that guar-
antees that the input sentences follow the strict rules of the MGL grammar.

• Scalability, maintainability and multilingual quality are among the strong points of gfsage.
They are consquences of the GF and MGL architecture. The inclusion of a new language, for
example, is straightfoward as soon as the corresponding GF linguistic components (resource
grammar and lexicon) are available.

• The motivation for gfsage has been not only its intrinsic interest in the context of quality
multilingual machine translation, but also the wish to produce a useful system for the regular
Sage users, particularly those that are not familiar with a CAS. Since it is based on the
cooperation between GFa and a CAS, mediated by the MGL, any improvement in GF may
be reflected in an improvement of gfsage.

• Another interesting aspect of gfsage is that it can suggest Sage packages that are not yet
available. See [10] for an example meant to express domains and ranges of real functions of a
real variable.

• The current version of gfsage is not very easy to install. The complications stem from the
strong differences between the programming context of Sage (Fortran, C, Python) and that of
GF (Haskell). This will improve in the near future due to the fact that GF is in the process
of enabling to interface other languages at runtime (for the moment this has been completed
for C).

6 Examples
Here are some illustrations:

compute the sum of 1, 2, 3, 4 and 5.
15

Multilingual Sage 129

compute the summation of x when x ranges from 1 to 100.
5050

compute the integral of the cosine on the open interval
from 0 to the quotient of pi and 2.

1

compute the integral of the function mapping x
to the square root of x on the closed interval from 1 to 2.

4/3*sqrt(2) - 2/3

compute the product of the octal number 12
and the binary number 100.

40

compute the imaginary part of the derivative
of the exponential at pi .

0

let A be the open interval by the right from 0 to 4 .
let B be the closed interval from 3 to 5 .
let C be the intersection of A and B .
let D be the open interval from 2 to 4 .
unite C with D .

] 2 , 4 [
it is the open interval from 2 to 4 .

compute the intersection of A and D .
] 2 , 4 [
it is the open interval from 2 to 4 .

compute the domain of the inverse function
of the hyperbolic tangent .

] -1 , 1 [
it is the open interval from minus 1 to 1 .

let f be the arctangent.
compute the domain of f.

] -Infinity , +Infinity [
it is the open interval from minus infinity
to infinity .

compute the left-composition of the sine
and the cosine.

X |--> sin(cos(X))
it is the function mapping X to the sine
of the cosine of X .

let A be the open interval by the left from 0 to 4 .
let B be the closed interval from 4 to 5 .
compute the intersection of A and B .

{4}
it is the set with only element 4 .

130 J. Saludes, S. Xambó

let A be the open interval by the right from 0 to 4.
let B be the closed interval from 3 to 5.
let C be the intersection of A and B.
let D be the union of A and B.
compute the difference of D and C.

{ [4 , 5] , [0 , 3 [}
it is the union of the closed interval from 4 to 5
and the closed interval by the left from 0 to 3 .

let D be the set with elements 1,2,3 and 4.
compute the intersection of A and B.

[3 , 4 [
it is the closed interval by the left from 3 to 4 .

unite it with D.
{ [3 , 4] , {1 , 2} }
it is the union of the closed interval from 3 to 4
and the set with elements 1 and 2 .

compute the union of A and D.
{ [0 , 4] , {2} }
it is the union of the open interval by the left
from 0 to 4 and the set with only element 2 .

compute the difference of D and the set with only
element 4.

{1 , 2 , 3}
it is the set with elements 1 , 2 and 3 .

let A be the closed interval from 0 to 1.
let B be the open interval from 2 to 3.
let C be the open interval from 3.1 to pi.
let D be the set with elements 0, 2, pi, 4 and 5.
compute the union of A, B, C and D.

{[0,1],]3.10000000000000, pi], [2,3[, {4, 5}}
it is the union of the closed interval from 0 to 1 ,
the open interval by the left from 3.1 to pi ,
the closed interval by the left from 2 to 3 and
the set with elements 4 and 5.

For more information, including news about how gfsage is evolving, search ‘gfsage’ at the
MOLTO web page

http://www.molto-project.eu/.
There you can find, for example, interesting details about how to enhance gfsage with multilingual
voice.

Other systems worth mentioning include WolframAlpha [13]. Powered by Mathematica, it covers
grounds that go far beyond computing, but it is monolingual and fails to understand, as far as the
authors can tell, pure mathematical complex queries.

7 Conclusions and further work
In this paper we have explored applications in the realm of Mathematics of the GF approach to
machine multilingual environments. In particular, we have analysed the problem of multilingual

Multilingual Sage 131

interfaces to computational mathematics systems. As a platform for these kind of applications, we
have presented the MGL. Finally we have presented the prototype interface gfsage.

Here are a few lines for future work:

• To enrich gfsage with a GUI that allows to enter text and formulas by means of icon palettes.
The text icons, like those featured in the MathBar prototype [3], support predictive writing
and ensure that the resulting texts are grammatically correct. The formula icons, like those
implemented in many systems, ensure that functions are given the appropriate number and
kind of arguments. Together, the enriched interface would guarantee that the resulting mul-
tilingual texts are syntactically sound, both linguistically and mathematically.

• To continue with the development of MMMA (Multilingual Mechanical Mathematics Assis-
tants) outlined in [12],5 In this case, in addition to the MGL and gfsage, the main component
to be developed is an interface to a suitable TP (Theorem Prover). In this regard, a worthwhile
project would be to develop a TP-Sage. Along these lines, a good start will be interfacing
with the Geogebra TP for Geometry.

Acknowledgements
We are thankful to the referees for a number of suggestions that have definitely improved the final
version.

Bibliography
[1] F. Botana, J. Escribano and M. A. Abánades, Sage: una aplicación libre para matemáticas,

SUMA 67 (2011), 41–46.

[2] Sage developing team, Sage Tutorial, release 4.7.2. Sagemath.org, 2011.

[3] T. Hallgren and J. Saludes, Math Bar Online, 2010.
http://cloud.grammaticalframework.org/minibar/minibar.html.

[4] P. Koehn, Statistical machine translation, Cambridge University Press, 2010.

[5] T. Kosan, Sage for Newbies, Sagemath.org, 2007.

[6] The OpenMath Society: http://www.openmath.org.

[7] A. Ranta, Grammatical Framework: Programming with Multilingual Grammars, CSLI Publi-
cations, Stanford, 2011.

[8] A. Ranta, Translating between language and logic: what is easy and what is difficult, In
Proceedings of the 23rd international conference on Automated deduction, CADE’11, pages
5–25. Springer-Verlag, 2011.

[9] Sage developing team, Simple Sage Server API, Consulted Jan 15, 2012.

5See also http://www-ma2.upc.es/sxd/Talks.html, where you can find the slides of the talk.

132 J. Saludes, S. Xambó

[10] J. Saludes and A. Ribó, Reals sets consisting of intervals and isolated points, supporting
integration, http://trac.sagemath.org/sage_trac/ticket/13125.

[11] J. Saludes and S. Xambó, The GF mathematics library, EPTCS, 79 (2012), 102–110. Pro-
ceedings THedu’11.

[12] J. Saludes and S. Xambó, Toward multilingual mechanized mathematics assistants, In J. R.
Sendra and C. Villarino, editors, Resúmenes del xiii Encuentro de Álgebra Computacional y
Aplicaciones (EACA 2012), number 09 in Obras Colectivas Ciencias, pages 163–166. Universi-
dad de Alcalá, June 2012.

[13] WolframAlpha, WolframAlpha: Computational knowledge engine.
http://www.wolframalpha.com.

